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Motivation/Scientific Context

- Quantitatively model geophysical flows such as Mantle Convec-
tion, Ocean, Atmosphere to better understand dynamics of Earth.

- It is difficult to accurately represent the physical problem because
Geophysical flow models must encompass a large range of spatial
and temporal scales.

- Usingadaptivenigh-ordemethods to numerically solve the model
equations, one can extend the spatial and temporal scales ove
which the model can be solved accurately.




Motivation/Scientific Context

- For example: The Earth’s mantle

- Viscosity phase changes at around 410 km and 670 km depth
(Fixed).

- Thermal boundary layers

- Solidification/Melting and Compositional fronts.




Motivation/Scientific Context

- Research Goals

- Construct a Parallel Adaptive Framework for solving the Navier
Stokes equations. Including refinement criteria, and solvers.

- Use this Framework to determine whether mantle plumes can pen-
etrate the regions of viscosity phase transition.




Mathematical Model

- The governing equations for an incompressible fluid enforce the
conservation of energy, momentum, and mass for a volume of
fluid particles.
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- p - density,c, - specific heatk - conductivity coefficientpr - heat

source per unit volume), = g - kinematic viscosity.




Mathematical Model Continued: Thermal Convection

- Density variations caused by thermal expansion lead to buoyancy
forces which drive thermal convection.

- In the Boussinesqg approximation, these buoyancy forces are ac-
counted for in the momentum equation, but density variations are
otherwise neglected.

aT
pocp(EHU.D)T) = KO“T + por
S+ (@D = —-Op+ v+ g1 (T~ T)
0]
0.t = 0.

- o - thermal expansion coefficienf - reference temperaturgg =
P(To).




Discretized System

- Adaptive Spectral Element methods are inherently well suited for
obtaining accurate solutions in both space and time.

- The Spectral Element Method - istagh-order methodyields
exponential convergencates when the solution is smooth. SEM
also has macro-elements which yi@ldrallel scalability.

- The Spectral Element Method usasstructured gridso provide
geometrical flexibility and h-refinement yieldslgebraic conver-
gencen areas of large gradients and fronts.




Temporal Discretization

- Solve energy equation for temperature
- Solve momentum and mass equations for velocities and pressure

- The Operator Integration Factor Splitting (OlFB&jethod is used
In solving the energy and momentum equations.

- Advective and diffusive parts are integrated separately.

- Explicit advancement of advective terms via a fourth order Runge-
Kutta scheme

- Implicit advancement of diffusive terms via a third order Back-
ward Differencing scheme.
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Temporal Discretization continued

- The OIFS algorithm can be written as:
. Start withT"=2, T"~1 T, solve the IVP using RK4

VaN

{ IFi(9=—-Ofi(9+r,  se(0,jyas

r —j +1—j
Tj (tn+1 J) _ Tjn J

. Obtain T2, T T respectively. They are then used to ad-
vance the system using the third order Backward Differencing
Scheme (BDF3)

11 1, - 3. 1.
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Temporal Discretization continued

- The temporal Discretization of the momentum equation is also
done using OIFS, the corresponding algorithm looks like:

- Start withu"=2, u"1,u", solve the IVP using RK4

+1-
uj(tn+1 j) _ UT J

- Obtain Uft*, a5t 03" respectively. They are then used in the

BDF3 scheme to advance the diffusive contributions of the sys-
tem.

{ dsdi(s) = —Relj(s)-U)0j(s),  se (0, )yAs]

{(6At+V+D) n+1 Dpnle:Ait(Bu\TLl n+1_|_3 n+l)
—gd-umt=0
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Spatial Discretization

- To discretize the system of equations spatially, they are recast in
their weak form. Findl', u andp such that:

oT
<E—|-(U-D)T,V>

11
<OTOv> 428 <Tv> = <fv> We HY(Q)d

<rv> WYeHYQ)

ou
<E+(U-D)u,v>

0 WweHYQ)
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Spatial Discretization

- First the domain is broken into K non-overlapping elements. Thus
obtaining a system of integrals summed over non-overlapping el-
ements.

- ChoosingGauss-Lobatto Legendre (GLguadrature rules to solve
thevelocity, andtemperaturentegrals, andsauss Legendre (GL)
rules to solve the integrals involving tipgessureand thediver-
genceof the velocity, one obtains a Spectral Element spatial dis-
cretization.

- We have implemented mesh generation routines that create rect-

angular grids, with rectangular elements, with GLL points defined
for the velocity grid and GL points defined for the pressure grid.
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Figure 1: Computational Grid for velocity nodes. 16 elements, polynomial degree 5
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System Discretization Continued

- After applying these temporal and spatial discretizations, the re-
sulting system of matrix equations becomes

- Conservation of Energy equation:

FaN

{ M%‘Iﬁj (s) = —ReQUj(s))Tj(s) + Mr, se (0, jyAs]
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System Discretization Continued

- Conservation of Momentum and Mass equations:

{ M&a;(s) = —ReQ;(s))0j(s),  s€ (0, jyAs

A i +1—
uj(tn+1 j) — U? J

11 M . 3. 1.
(@M _I_VA)uirl+1_DT pn+1 _ E(3U2+1—§U2+1+§Ug+1)

DUt =0
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System Discretization Continued

- Tensor product formulation of the Spectral Element Method, al-
lows thesystem matrices appliegfficiently vialD tensor product
evaluationsand are thus never stored.

- Matrix vector products are applied by smaller matrix matrix prod-
ucts. Namely,

T
(Anxn ) ann)n2><n2un2><1 — annUnannxn

- This method of evaluation reduces the d-dimensional, n-mesh poin
O(n?!) matrix vector product operation taZ(n*+1) matrix matrix
product operation.




18

System Discretization Continued

- Dependencies along common edges/faces of elements is handle
after evaluation of an operator on a vector.

- These dependencies are handled using a method €atlect Stiff-
ness Summatioh’ .
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Figure 2: (Left) Global ordering and (Right) local ordering. Direct stiffness summation X’ is achieved via the mapping
between the local and global node ordering.
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Stokes System

- A Runge-Kutta integration, and a Helmholtz solve for tempera-
ture. A Runge Kutta integration and a Stokes system solve for
velocity and pressure.

- The most challenging, and computationally expensive operation
IS the Stokes system solve.

H _DT un+1 frH—l
ERSIEONEY

- H Is the symmetric positive definite Helmholtz operatof. is
terms on the right hand side of the BDF3 equation.

- D is the discrete divergence operator @hdis the discrete gradi-
ent operator.
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Stokes System continued

- Solving this coupled system exactly requires a slowly converging
Uzawa algorithm.

- Solve forp™t
DH—lDT pn+1 _ _DH—lfn—l—l
. Solve foru"t?!
un+1 —H —1DT pI’H—l £+ H —1.|:I’H—l

- Instead, the Stokes system can be solved approximately, up to the
error of the time stepping method already chosen.
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Stokes System continued

- This is done by performing a decoupling of the pressure and ve-

locity terms by introducing a new matrQ, and via a block LU
factorization.

H —HQDT yn+1 fn+1 rn+1
5o ) = (o )+ ()

- Performing block LU one obtains:
H 0 ue [/ fmH
D —DQDT pn—l—l — 0

| —QDT un—l—l
o ()

|
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©
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Stokes System continued

Q= 6At/11|\/|—1 gives a first order splitting error, and results In
DQD' being SPD.
- This choice ofQ results in thefractional step methqdv/* Is an

approximation to/"*! which is not divergence free. The second
step removes the divergence frefmand stores the result i+,

- Q=06At/1IM1—(6At/11)°M 1AM 1 4 (6At /11)3(KM~1)2M 1
gives a third order splitting error, and result@®D' being SPD.




23

Adaptive Mesh Refinement

- Spectral element methods inherently yield exponential convergenc
to a smooth solution.
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Figure 3. Convergence Analysis for increased mesh resolution.

Number of elements for p-refinement set at 4.
Polynomial Degree for h-refinement set at 4. Test equation [%u=x"y8+ nggy6
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- To avoid spurious oscillations in the solution, the number of ele-
ments will increase in regions of sharp fronts or gradients.

- Interpolation between non-conforming elements is made during
direct stiffness summation.

- We have implemented our methods to allow for adaptive mesh
refinement schemes.

- The next step in our implementation is to create interpolation schen
to share information between non-conforming elements.
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Parallelization

- The Spectral Element Method is well suited for parallel architec-
tures due to it being a coarse grained algorithm. i.e. local dense
computations are performed before requiring sparse inter-element
communication.

- Elements are broken up into groups (macro-elements) and assigne
to processors.

- A Parallel Direct Stiffness Summatioh;, is then used share and
weight information on the macro-element boundaries between pro-
Cessors.
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Figure 4: (Left) Global ordering and (Right) local ordering. Direct stiffness summation Z’ is achieved via the mapping
between the local and global node ordering.

- A global index map Is stored on each processor containing the
global index for each its nodes.

- A global sort is performed to determine the processors which share
a node with the same global index, nodal data is then transferred
to the proper processors, and averaged on each processor.

- This implementation is independent of geometry, and allows for
complicated domains, unstructured grids, and adaptive methods.
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Current Progress

- Object Oriented Framework for Parallel Adaptive Spectral Ele-
ment Method is being written and tested.

- Object Oriented methods to create rectangular meshes and index:
INg maps

- Parallel Direct Stiffness Summation routine has been implemented
using MPI.

- 2D Advection-Diffusion equation

- 2D Laplace and Poisson equations

- Solvers have been implemented to allow for adaptive grids.
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Future Work

- Correct bug in Stokes solve.

- Interpolation schemes between non-conforming elements for adap
tivity.

- Refinement criteria for h/p refinement, e.g. error estimators, front
tracking methods.

- Use framework to investigate the ability of plumes to penetrate the
410 and 670 viscosity phase changes.
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Summary

- Quantitatively model geophysical flows such as Mantle Convec-
tion, Ocean, Atmosphere to better understand long term dynamics
of Earth.

- Geophysical flow models must encompass a large range of spatial
and temporal scales in order to accurately represent the physical
problem.

- Our Parallel Adaptive Spectral Element Scheme will provide a
framework to allow scientists to study geophysical flows.

The End — Thank you
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